Qual è la media aritmetica?

La media aritmetica è la media di una somma di numeri, che riflette la tendenza centrale della posizione dei numeri. Viene spesso utilizzato come parametro Parametro Un parametro è una componente utile dell'analisi statistica. Si riferisce alle caratteristiche utilizzate per definire una data popolazione. Viene utilizzato nelle distribuzioni statistiche o come risultato per riassumere le osservazioni di un esperimento o di un'indagine.

Significato aritmetico

Esistono diversi tipi di mezzi con diversi metodi di calcolo. La media aritmetica è il tipo più semplice e più utilizzato. Viene applicato frequentemente in finanza ma non è sempre lo strumento più ideale per determinati scopi.

Sommario

  • La media aritmetica viene calcolata dividendo la somma di una raccolta di numeri per il conteggio dei numeri, che riflette la tendenza centrale di quella raccolta.
  • La media aritmetica non è sempre in grado di identificare correttamente la "posizione" di un set di dati, poiché può essere distorta da valori anomali.
  • In finanza, la media aritmetica è appropriata per supportare stime future.

Come calcolare la media aritmetica

Per calcolare la media aritmetica, aggiungi una raccolta di numeri e dividi la somma per il conteggio dei numeri in quella raccolta. L'espressione matematica è data di seguito:

Media aritmetica - Formula

Dove:

  • a i - Il valore dell'i -esima osservazione
  • n - Il numero di osservazioni

Ad esempio, vengono raccolti i prezzi di chiusura di un'azione negli ultimi cinque giorni rispettivamente: $ 89, $ 86, $ 79, $ 93 e $ 88. La media aritmetica del prezzo delle azioni è quindi $ 87 [(89 + 86 + 79 + 93 + 88) / 5]. Il valore mostra la tendenza centrale del prezzo delle azioni negli ultimi cinque giorni. Riflette la posizione in cui si trova il prezzo corrente delle azioni confrontandolo con il prezzo medio di 5 giorni.

Come mostra la sua formula, la media aritmetica misura ogni valore di osservazione allo stesso modo, quindi è anche nota come media non ponderata o media ugualmente ponderata. È un caso speciale nel concetto di media ponderata, in cui è possibile assegnare un peso a ciascuna osservazione secondo necessità.

Tutti i pesi nella raccolta di osservazioni devono essere sommati a 1. La media aritmetica assegna un peso di 1 / n a ciascuna osservazione, assumendo che ci siano n osservazioni nella raccolta.

Media ponderata

Significato aritmetico

Dove:

  • w i - Il peso per l'i-esima osservazione

Media aritmetica, mediana e modo

La media aritmetica è spesso utilizzata per identificare la "posizione centrale" della distribuzione di un gruppo di dati. Tuttavia, non è sempre un indicatore ideale. Le osservazioni occasionali che sono significativamente maggiori o minori rispetto al resto del gruppo sono note come valori anomali.

I valori anomali non sono rappresentativi di un gruppo di dati, ma possono avere un impatto significativo sulla media aritmetica. In una raccolta di dati distorta positivamente, i valori anomali estremamente grandi fanno aumentare la media aritmetica; in una raccolta di dati distorta in modo negativo, i valori anomali estremamente piccoli riducono la media.

Asimmetria positiva

Asimmetria negativa

In situazioni con valori anomali, la modalità o mediana Median Median è una misura statistica che determina il valore medio di un insieme di dati elencato in ordine crescente (cioè, dal valore più piccolo al valore più grande). La mediana può indicare meglio la tendenza centrale di un insieme di dati rispetto alla media. La modalità è il valore che appare con la frequenza più alta. La mediana è il "punto medio" che separa esattamente la metà superiore e la metà inferiore del set di dati. I valori anomali esercitano un impatto molto minore sui due parametri (in particolare sulla modalità).

Pertanto, la modalità e la mediana potrebbero essere più rappresentative di una raccolta di dati con valori anomali estremamente grandi o piccoli. In un set di dati inclinato positivamente, la mediana e il modo sono inferiori alla media aritmetica. In un set di dati distorti negativamente, la mediana e il modo sono maggiori della media aritmetica.

Media aritmetica, media geometrica e media armonica

Oltre alla media aritmetica, gli altri due tipi di media comunemente utilizzati nel mondo finanziario sono la media geometrica e la media armonica. I diversi tipi di mezzi vengono applicati per scopi diversi.

La media aritmetica dovrebbe essere utilizzata quando si cerca la media di un insieme di valori grezzi, come i prezzi delle azioni. La media geometrica deve essere utilizzata quando si tratta di un insieme di percentuali, che derivano da valori grezzi, come la variazione percentuale dei prezzi delle azioni.

Inoltre, il calcolo della media geometrica tiene conto dell'effetto di composizione su periodi, che non può essere catturato dalla media aritmetica. Pertanto, la media geometrica è più appropriata per misurare la performance storica media dei portafogli di investimento, soprattutto quando i dividendi e altri utili vengono reinvestiti. La media aritmetica viene spesso utilizzata per stimare le prestazioni future.

Media geometrica - Formula

La media armonica può trattare frazioni con denominatori diversi. Pertanto, è l'approccio più appropriato ai rapporti medi, ad esempio, il P / E e EV / EBITDA EV / EBITDA EV / EBITDA viene utilizzato nella valutazione per confrontare il valore di attività simili valutando il loro valore d'impresa (EV) con il multiplo dell'EBITDA rispetto a una media. In questa guida, suddivideremo il multiplo EV / EBTIDA nei suoi vari componenti e ti illustreremo come calcolarlo passo dopo passo. Denominatori disuguali causeranno pesi diversi per ogni dato quando viene applicata la media aritmetica.

La media aritmetica dei rapporti P / E è distorta a meno che tutti i rapporti P / E nel gruppo non mostrino lo stesso valore per il denominatore (lo stesso utile per azione Utile per azione (EPS) Utile per azione (EPS) è una metrica chiave utilizzata per determinare la quota dell'azionista comune dell'utile della società. EPS misura l'utile di ciascuna azione comune), il che è raro. Il vantaggio della media armonica è che assegna pesi uguali a tutti i dati nel gruppo, indipendentemente dal fatto che i denominatori siano uguali o meno.

Media armonica - Formula

Letture correlate

Finance è il fornitore ufficiale della certificazione CBCA ™ CBCA ™ globale Certified Banking & Credit Analyst (CBCA) ™ L'accreditamento Certified Banking & Credit Analyst (CBCA) ™ è uno standard globale per gli analisti del credito che copre finanza, contabilità, analisi del credito, analisi del flusso di cassa , modelli di alleanze, rimborsi di prestiti e altro ancora. programma di certificazione, progettato per aiutare chiunque a diventare un analista finanziario di livello mondiale. Per continuare a far avanzare la tua carriera, le risorse finanziarie aggiuntive di seguito saranno utili:

  • Concetti di statistica di base in finanza Concetti di statistica di base per la finanza Una solida comprensione delle statistiche è di fondamentale importanza per aiutarci a comprendere meglio la finanza. Inoltre, i concetti statistici possono aiutare gli investitori a monitorare
  • Livello di misurazione Livello di misurazione Nelle statistiche, il livello di misurazione è una classificazione che mette in relazione tra loro i valori assegnati alle variabili. In altre parole, livello di
  • Deviazione standard Deviazione standard Da un punto di vista statistico, la deviazione standard di un set di dati è una misura dell'entità delle deviazioni tra i valori delle osservazioni contenute
  • Media ponderata Media ponderata La media ponderata è un tipo di media calcolata moltiplicando il peso (o la probabilità) associato a un particolare evento o risultato con il suo

Raccomandato

Che cos'è il test di ipotesi?
Cos'è un titolo non coperto?
Che cos'è l'interesse semplice e l'interesse composto?